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Abstract 

A new method for the analysis of thermal desorption spectra is presented, based on the experi- 
mental peak maximum functions for temperature Tm([3) and pressure Pm(~) and a rigorous mathe- 
matical treatment. The resonant heating rate ~ is determined, satisfying Tm(~)=Tr, where T~ is the 
resonant temperature defined by A exp(-Eal(RT~))=l. Desorption energy Ed and frequency factor 
A can be determined simultaneously with relatively high robustness towards statistical experimen- 
tal errors as demonstrated by computer-simulated thermal desorption spectra. 
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Introduction 

The thermal desorption spectroscopy (TDS) method is widely used to char- 
acterize the chemical reactivity of surfaces by analysis of the desorption kinet- 
ics of an adsorbate and has been desribed in various review papers [1-8]. For 
the majority of real systems the values of the most important kinetic parame- 
ters, such as the frequency factor A and the activation energy of desorption E~, 
depend on the method of their determination and suffer from limited accuracies 
in the experimental data and the assumed model and are, thus, ambiguous 
[9, 10]. Generally, the influences of surface heterogeneity, lateral interactions 
between adsorbed species or surface migration on the desorption kinetics are 
not considered due to a lack of corresponding detailed information and due to 
the complexity of resulting determination methods. 

It this case, it might be useful to restrict the analysis to the simplest possible 
model, in order to focus on the determination of the most important parameters, 
i.e. the activation energy of desorption Ea and the frequency factor A, and to de- 
fine an adsorption system by these characteristic coefficients regardless of any 
physical meaning. For this strategy well-defined and easily reproducible ex- 
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perimental parameters and unambiguous determination procedures are de- 
scribed. Most experimental designs apply high pumping speeds and make use 
of  the resulting correlations between the recorded pressure and the rate of 
desorption with respect to time or to temperature. The determination of the ki- 
netic parameters from peak shape analysis procedure suffers from the sensitivi- 
ties of peak shapes on systematic errors and from statistical fluctuations, 
mathematical complexity, and limited computational precision. 

A more straightforward determination method makes use of peak maximum 
variations with altered heating rates and constant initial coverage [11-14]. The 
evaluation accuracy of the method suffers, however, from the assumption, that 
the surface coverage at peak maximum is independent of the heating rate and 
constant [ 13, 14], and from sensitivity to statistical fluctuations of the measured 
values of the peak maximum temperature. It is required, that the heating rate [3 
has to be varied by about two orders of magnitude for reasonable accuracy [15]. 
In many experimental arrangements this would also result in sensitivity prob- 
lems at low rates 13 and in peak shape distortions by readsorption or diffusion 

limitation at high rate 13. 
In the following, a new method is described, enabling simultaneously a pre- 

cise determination of Ed and A for a restricted range of heating rates 13 and being 
robust both to statistical fluctuations of measured data and to constrained model 
errors. 

TDS procedure of analysis 

Definition of the resonant parameters 

Thermal desorption experiments employ continuous variation of tempera- 
ture 

T = To + 13t (1) 

starting at To and the surface coverage 0(To)=0o, and using a linear heating rate 

13 to obtain a variety of kinetic parameters. 0 is normally applied as fractional 
coverage, i.e. dimensionless, which means that a maximum value of adsorbed 
species per surface unit has to be defined for each experiment. Usually, the par- 
tial pressure P or, more correctly, the density of a gaseous desorbate is mea- 
sured. In an experiment with the high pumping speed and negligible 
readsorption, in which Pet -dO/dt, the maximum P=(13) occurs, for a given 13, at 
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(dP/dT) [ T.(~) = O, (2) 

where Tm(13) is the peak maximum temperature for the same I~. For a series of 

values P=(~) and T=(13 ) can be recorded. Defining r~(T) = --dO~tiT as the de- 
rivative function of coverage with respect to temperature, the relationship be- 
tween this derivative function and pressure vs. temperature for a given heating 
rate can be expressed as 

r~(T) = ( Kpd~)Pg(T) (3) 

where the factor g p r  is given by the temperature, the size of  the recipient and the 
pumping rate [4, 11]. Hence, I=(13) can be transformed to r,(l~), i.e. to the peak 

maximum value of  rl~(T). The shapes of r~,(13) and Tm(13) depend on the kinetics 
of  desorption. The experimentally available quantities, based on which the 
desorption parameters should quantitatively be determined, are related to the 
functions T~(~l) and rm(~) defined on a rationally limited range of ~ values with 

the same constant 0o. Up to now, there is no rigorous mathematical method for 
simultaneous determination of Ed and A based on the above information about 
desorption processes. 

Many approaches to a modelling of the temperature dependence of  the rate 
of  desorption are based on a simple Arrhenius expression, called Polanyi- 
Wigner equation, which can be described as 

-dOIdt = O" A exp(-Eg(RT)),  (4) 

where n is the reaction order and R the gas constant. In the following, two im- 
portant parameters will be introduced. 

D e f i n i t i o n  1 

The temperature Tr, at which the desorption velocity constant 

Ka = A exp( -Ed(RTr) )  = 1, (5) 

is called resonant temperature of desorption. 
Hence, the desorption velocity constant Kd, having the same dimension as A, 

can be represented by 

Kd = exp(o~(T-Tr)/T), (6) 

J. Thermal Anal., 41, 1994 



770 ZHOU et al.: THERMAL DESORPTION MODEL 

where o~ = In A is the logarithmic frequency factor and Tr = Ed(Ro0 the reso- 
nant temperature of desorption [16]. The question arises, how the kinetic pa- 
rameters Tr and oq corresponding to Ed and A with a certain n value, can be 
determined simultaneously by the analysis of the information included in the 
experimentally observed Tm(l~) and rm(l~). 

Definition 2 

The linear heating rate ~, satisfying 

T.(I3~) = T~, 

is called resonant heating rate. 

(7) 

Kinetic model of  a n-order desorption process 

In the following, we will consider rm(13) and Tin(13) as the observed outputs 

of  a desorption process, for which a linear heating rate I~ is treated as the input 
both of  the process and of the assumed process model. 

Due to the applied linear heating program, the Eq. (4) can now be expressed 
by the use of  Tas the only variable. Furthermore, from Eq. (1) we have 

d0/dT = (l/~)(d0/dt), (8) 

thus Eq. (4), in combination with Eq. (6), becomes 

rB(T) = --dOIdT = (l/[i)0* exp(~(T-Tr)/T), (9) 

that describes the used process model. 
The general solution of Eq. (9) Can be written as 

0(T) = 0o exp(-l(To, T)/13, for n=l;  (10) 

0(T)=0o/ "-~/1 +(n-1)O~o-ll(To, T)I~ for n > 2  (11) 

T 

l(To, 7) =fexp (or(T- T,)IT)dT 
To 

(12) 

where 
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can be calculated by numerical methods, e.g. the Runge-Kutta method. 
Using the input signal, {I]i, i = I , N } ,  and the output signals, {T~(I]i), 

r, ,(~), i = 1, N}, where N is the sampling number, the proposed method for pa- 
rameter determination can be considered as the procedure of  finding the kinetic 
parameters n, ct, Tr of  the model expressed by the Eq. (9), which gives the 

model output signals {rm(~), Tm(~), i = 1~/} in such a way that the performance 
index 

N 

V= ~ [I r . ( ~ )  - rm(~ i )  I q- h I T.(l~i) - T~(13~) I ] 
/=-1 

is minimized with h as a scaling factor. Assuming now that n is known and that 
V = 0, we have r=(13i) = r~(l~) and T=(13i) = T~(I~), so that only ct and T~ of the 
proposed model represented by Eq. (9) have to be estimated. 

The sugges ted  method  

The suggested method is characterized as rigorous, since it considers, for the 
first time, that the fractional coverage at the peak maximum is dependent  on the 
heating rate. It will be shown in the following sections, that the simplification 

O~ 1 = O~-l/n(n>_2) or 0~ = 0o/e(n = 1) underlying the methods used, up to now, 
affects the accuracy for the simultaneous determination of  Ed and A and the ro- 
bustness towards statistical errors. 

In this paper three procedures have been developed to treat different cases. 

Procedure  1 

For known n and ~ the condition-function (cf. Appendix Eqs (27)-(36)) 

~-~([~) = ct.  ~/13rm(~) (13) 

n rm(13) 

and the experimentally observed functions Tm(13) are plotted on the Tm-fl plane. 

The crosspoint from Tm([I) and T~([~) is ([~, Tr). 

Generally, o~ and Tr are unknown, so that an additional condition which does 

not contain 0~ for the determination of  ~ has to be found. Procedure 2 and Pro- 
cedure 3 are developed for this issue. 
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The data set applied is {T=(13i ), r=([3i) i = 1, N}. Considering that the surface 
coverage at the peak maximum is a function of heating rate for known n, the 
resonant heating rate 1~ defined by Eq. (7) should be estimated from the infor- 
mation included in the function r=(~). The resonant temperature Tr defined by 
Eq. (5) can be obtained on the curve T=(~) by Definition 2, and, then, the loga- 
rithmic frequency factor Ix introduced by Eq. (6) is determined by Eq. (13), i.e. 

Ix = nT:m(~r)l ~ ) .  From Eq. (6) the activation energy Ed = RIXTr and the 

frequency factor A=exp(ct) are obtained. The conditions for the determination 

of  ~r on the curve r=(l] ) is given by (cf. Appendix Eqs (37)-(42)) 

In v tv ~ )  o rm,Or, - I + 13,r-mi(~r) , for n = I 
(14) 

and 

(15) 

Procedure 2 

If  n= 1 or n=2, the two experimentally observed data sets { 13i, r.(l~i) i = 1, N} 

and { ~, T=(l~i) i = 1, N} are best-fitted by 

rm(13) = )'rol~ -~ and Tm(l~) = '~to~ t. (16) 

The parameters Ix and Tr can be simultaneously estimated with the help of the 

following equations, (cf. Appendix Eqs (43)-(48)): 

1 

n,=7 t ,o J , 

1 (17) 
_ 0o(1+7,) ' 

n , -  , n = 2 .  

A A A 

r, = rm(l ) =   o13? 

A 
^ T, 
I x = ~ ,  n= 1; 

= A ~..__A 14qr, 

2T:Ty, o 13~--T, n = 2. 

(18) 

(19) 
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As an alternative to Procedure 2, the resonant isocline of  the observed func- 
tion rm(13) for the graphic determination of the point (l~, r=(13~)) is introduced in 
the following (cf. Appendix Eqs (49)-(53)). 

Definition 3 

The curve described by the equation for n = 1 

0o c 
7-m(13) = ~-e--~, c > 0 

P 

(20) 

or by the equation for n >2 

13 C> 0 (21) 
(C+D C+13' 

where c is a constant factor, is called resonant isocline of the observed function 
rm(13), if  it is a tangent to r=(13) at the point (~r, r=(13,)). 

Procedure 3 

Assuming n is known, we have two experimentally observed functions 
T=(I8) and r=(13). The point (l~, rm(13r)) can be graphically determined by plot- 

ting the resonant isocline of r=(13). Then, on the Tm-13 plane, T~ is read out at 13r 
on the function T=(13), i.e. Tr=T=(130. Finally, ot is obtained in the way repre- 
sented by Eq. (13), i.e. 

rm(pr) 
Ot = nTm(pr) 

(22) 

Hence, t~ and Tr are determined simultaneously. 

Experimental design 

Prior to a TDS experiment, the possible ~r existence range should be esti- 
mated, because the core information about the desorption kinetics lies in the 
neighborhood of  the resonant point {rm(13r), Tm(13r), ~r} because of  Definition 

1-2 and the condition described by Eq. (13). If  the boundary values for t~ and Tr 
are known, i.e. 
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Trl ~ Tr ~ Tr2 and oq _< cx < o~2. 

f o r  given values of  n and 0o, the adequate value 13r. ~n from (T~I, r and ~r,  max 

from (T~2, oq) can be determined, and the J3r existence range is 

If  the above estimated range is experimentally available, data sets { rm(13i), 

T=(~i), i = 1, N} and Procedure 2 or Procedure 3 can then be used to determine 

simultaneously the parameters cx and Tr. If  the range is beyond the accessibility 

of  experiments,  Procedure 2, enabling an extrapolation to the 13r range, can be 
used. 

The constant factor c of  the resonant isocline can be determined systemati- 
cally by trials, since the isocline function described by Eq. (20) or Eq. (21) is 
monotonously changing with respect to c for a given 13~ (Fig. 1). The tangential 

point denoted by (~,  rm(~r)) will be readily matched by trials. 
It is shown from simulations, that the resonant heating rate exists in the 

range 

0.576 < ~r < 49.177 (23) 

for a second-order desorption process in the intervals for 0o e [0.1, 1.0], for 

e t e  [23.0, 33.0] and Tr ~ [180.0, 1050.0] corresponding to A e [0.97.101~ 
2.1.1014] and Ed e [21.0, 287.0], For example, if 00=0.5, ~ e [27.0, 30.0] and Tr 

[615.0, 832.5], the estimated I]~ exists in the range 10.875 -< 13r -< 16.448 (Ta- 
ble 1). 

Evaluation accuracies 

To check the evaluation accuracy of the above procedures, simulated desorp- 
tion curves 

r~(73 = - d 0 / d r  = (1/]3)0nexp(ot(T- Tr) / 73 

have been calculated with the constant values of  n, To, 0o, or, Tr. Using the input 

signal {13i, i = 1, N}, the peak maximum points (Tin(130, rm(130) are determined. 
Taking 0o = 0.025, To = 293.0, ot = 29.93 (equal to A = 9.964.1012[1/s]), 

Tr = 523.71 (equal to Ed = 130.256[kJ/mol]), the functions rm(13) (Curve 1) and 

Tm(l~) (Curve 2) are plotted in Fig. 2 for n = 1 with 13i ranging from 15.0 to 20.0 
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in steps of  0.5, and in Fig. 3 for n = 2 with 131 in the interval [0.1, 2.1] in steps of  
0.1. 

In order to re-evaluate oc and Tr by Procedure 1, the condition-function de- 
scribed by Eq. (13) is plotted as Curve 3 in Fig. 2 for n ~ 1 and in Fig. 3 for 

n = 2. The crosspoint from Curve 2 and Curve 3 is (~r, T0=(17.5,523.7) for 

n = 1 and (~lr, Tr)=(0.475, 524.0) for n = 2. The standard deviation I(T~-T~)Ar~I of 
the resonant temperature is calculated as 0.002% for n = 1 and 0.055% for 
n = 2 .  

Table 1 Values of ~r in deg-s -l for a selected range of frequency factors A ~ [0.97-101~ 
2.1.1014] in s -1, activation energies Ed ~ [21.0, 287.0] in kJ.mol -l, and 0o = 0.5 

T~ 
180.0 397.5 615.0 832.5 1050.0 

23 4.215 9.309 14.401 19.495 24.589 

24 4.029 8.896 13.766 18.633 23.502 

25 3.858 8.519 13.182 17.845 22.504 

26 3.700 8.175 12.645 17.116 21.589 

27 3.555 7.853 12.152 16.448 20.745 

28 3.421 7.557 11.693 15.827 19.963 

29 3.298 7.283 11.268 15.253 19.238 

30 3.182 7.026 10. 872 14.718 18.562 

31 3.075 6.789 10.504 14.221 17.933 

32 2.973 6.568 10.159 13.754 17.346 

33 2.879 6.356 9.836 13.316 16.795 

Now, making the best fit of  Curve 1 and Curve 2 in Fig. 2 for n=l  and in 
Fig. 3 for n=2 for the application of  Procedure 2, we get 

rm(~) = 664.931"10-613 -~176176 Tm(~) = 478.88"13 ~176 in Fig. 2, 

rm(13) = 361.304-10-61] -~176176 Tm(13)= 536.688.1] ~176176 in Fig. 3. 

For n=l ,  we obtain from Eq. (17) 

A 
~r = e-1(0.025/(664.931-10-6)) 1"~ 17.50 

and from Eqs (18)-(19) 
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^ 

T~ = 478.88 -17.50~176 523.71, ~t = 523.71/17.50= 29.926. 

The standard deviation of  the resonant temperature is nearly 0% and that o f  the 
logarithmic frequency factor 0.013%. 

For n=2 we have 

^ __L_I 
~, = [0o2(1 + yr)2/(4yro)] l-r, = 0.487111"~176 0.465, 

A 

Tr = 536.68 "0.4650.0314806= 523.90, 

1.0613017 
~ = 2.523.9.'4361.304.10 -4.0.465 2 = 29.90. 

Table 2 Accuracy and robustness comparisons 

A A 
Applied A I Ed I Case n -1 
method s kJ.mol 1 

1 NM 9.924.1012 130.236 

Evaluation 1 OM 4.522-101: 126.926 

accuracy 2 NM 9.994.1012 130.341 

2 OM 7.460.109 130.774 

Robustness 

1 NM 2.230.10 t3 133.490 

1 OM 1.141.103 36.981 

2 NM 9.115.1012 129.738 

2 OM 1.663.109 124.172 

Robustness of 2 NM 5.692.1012 127.089 

extended model 2 O M 1.890.10 I~ 131.800 

The parameters to be determined A =9.964.1012 s -1 ; Ed = 130.256 kJ-mo1-1 

The standard deviation of  Tr is 0.036% and that of  ot 0.10%. The transformation 

of  these re-evaluated parameters into A and Ed for n = 1 and n = 2 is given in Ta- 
ble 2 (line 1 and line 3) .  

For Procedure 3, the corresponding resonant isocline of  rm(13) (Curve 1) is 
plotted as Curve 4 in Fig. 2 for n = 1 and in Fig. 3 for n = 2. The tangential 

point (~r, rm(13r)) can be read out for n = 1 in Fig. 2 as (17.5, 558.0) and for n = 2 

in Fig. 3 as (0.475, 377.2). At I]r for n = 1 in Fig. 2, Tr = Tm(13~) = 523.70; at 0r 
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A 

for n = 2 in Fig. 3, Tf = Tm(~r) = 5 2 4 . 0  and rm)(~r) = 377.2-10 -6. Hence,  from 
Eq. (22), i.e. 

A A A A 

0% = T#~,,  n = 1; o% = 2Tplrm(~r) / ~r, n = 2, 

A 
w e  can get sequentially the value o f  eto for n = 1 and n = 2, i.e. 29.926 and 
29.933.  The standard deviation of  the resonant temperature is 0.002% for n = 1 
and 0.055% for n = 2; that o f  the logarithmic frequency factor is 0 .013% for 
n = 1 and 0.01% f o r n =  2. 

The above results show that the errors generated by the proposed procedures 
can be neglected as compared to the normal experimental uncertainties. 

For a comparison between the ordinary heating rate variation method (OM) 
and the proposed new method (NM), the same data set as used above is applied 
to determine Ed and A by OM. 

The most frequently used equation of the heating rate variation methods can 
be written as [13, 14] 

600 ~ r 600 

,,--3, 

4 
,m 

o 
,,-i 

x 
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475 

C u r v e  
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525 "'-(~ 
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4 7 5  

450 450 
15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 

(KI~) 

Fig. 2 Computer-simulated r~(]3) (a. u.) labelled with Curve 1 and Tm(~) (in K) labelled with 
Curve 2 for the reaction order n = 1, the condition-function (Curve 3) from Eq. (13) re- 
lated with the Procedure 1 and the resonant isocline (Curve 4) from Eq. (20) rdated 
with the Procedure 3.13 is the heating rate in deg-s -I 
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Fig. 3 Computer-simulated rm([~) (a. u.) labelled with Curve 1 and Tm([3) (in K) labelled with 
Curve 2 for the reaction order n = 2, the condition-function (Curve 3) from Eq. (13) re- 
lated with the Procedure 1 and the resonant isocline (Curve 4) from Eq. (21) related 

with the Procedure 3. ~ is the heating rate in deg.s -I 

In (T2/~) = (Ed/(IOOOR))(IOOO/Tm) + In (Ed/(RAO~-I)). (24) 

For n -- 1 we have 

and for n = 2 

In (T2/~)= 15.2739 ( 1 0 0 0 / T m ) -  19.5054 

In (T~/~5)= 15.7369 (1000 /T in ) -  16.7579, 

from which the two parameters Ed and A are calculated and given in Table 2 
(line 2 and line 4). The larger errors resulting from OM have to be referred to 
the neglect o f  the heating rate dependence of  0m. 
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Robustness comparisons 

The OM is considered to be very sensitive to minor experimental errors, so 
that it may be difficult to obtain reliable kinetic parameters [6]. To compare the 
sensitivity of  different methods, i.e. NM and OM, towards statistical errors, two 
types of  robustness studies are described in the following. 

First, the same data set as used in the previous section, i.e. {T,,(~0, 

r , , (~) i = 1, N}, is disturbed by addition of  a random small error, namely 

{Tm(~i)'t-O'T(~i), rm(~i)q-(Yr(~i),i= 1,N}, where tYr(~i)<l% max{Tm(~i)}, 

o~(13~)<1% max{ rm(I]i)}. Both NM and OM are applied to re-evaluate A and Ed. 
The results presented in Table 2 (line 5-8)  demonstrate the different robustness 
towards statistical errors. 

Secondly, an extended model for the desorption with coverage dependent  
activation energy 

E(0) :Ed+v0, 

i.e. with coverage dependent resonant temperature 

Tr(O) : T~o + W,0, 

where Tro=Ed/(RoO and Wt=Tl(Rtx), is considered. A condition-equation similar 

to Eq. (13) can be described in the following (cf. Appendix Eqs (27)-(33)) 

T-m~(~l)- 0t ~ , ,  (25) 
n ~ ~1 + Wtrm(~)). 

If  IWtrm([3)l<<l, Procedure 1-3 can be applied for a desorption with coverage 

dependent  activation energy (cf. Appendix Eqs. (34)-(35). 

Taking Wt=-10 for n=2 and the same values of the other parameters used in 

the previous section, the data set {Tm(I]i), rm(I]i), i = 1, N} is obtained by the 
Runge-Kutta method from the equation 

r~(T) = - d0/dT = 1/I]0" exp (ct(T-  Tr(0))IT). (26) 

Making the best fit of  rm(I]i) and Tm(~i) for the application of  Procedure 2 of 
NM, gives 

rm(13) = 357.401-10-61] -0"0624292, Tm(~) = 532.964 ~0.0308685 
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The same data set is fitted using OM as 

ln(T~/13) = 15.8603 (1000/Tm) - 17.2098. 

The results are shown.in Table 2 (line 9-10). The better robustness of  NM can 
be attributed to the complete mathematical treatment, again. 

Condusions 

Although the TD experiment with linear heating rate seems to be very 
straightforward and simple, some experimental precautions must be taken into 
account with regard to the range in which the heating rate is varied. The core in- 
formation about the kinetics of  desorption processes described by the Pol~inyi- 

Wigner equation lies at the defined resonant point {rm(13r), Tm(13r), 13r}. Hence, 

the alteration of 13 in close vicinty to the resonant heating rate 

[(13r-A13r), (13r+A13r)] is sufficient for a parameter determination with resonable 

accuracy. If a constant initial coverage 0o can be realized, and the boundary val- 

ues for the expected kinetic parameters are known, the optimal range of  13 val- 
ues for an experimental design can be predicted. Thus, the proposed method for 
parameter determination of a thermal desorption model is related to those deter- 
mination Procedures 1-3 making use of peak maximum variations with con- 
stant initial coverage and altered heating rates in or close to the resonant heating 
rate. The values of  the kinetic parameters Ed and A can be determined simulta- 

neously and with improved accuracy and robustness, since Procedures 2-3 con- 

sider the dependence of  0m on ~. Additionally, the definition Kd = 

A exp(-Ed(RT~)) = 1 could be considered as a normalization procedure for a 
better comparison of  results from thermal analysis data obtained at identic sys- 
tems in different laboratories. 

Notations 

A frequency factor 
Ed energy of desorption 
R gas constant 
n kinetic order 
t time 
to initial time 

Pro(13) observed peak maximum pressure as a function of  13 

ra(T) derivative function of  coverage to temperature vs. T for a given 13 
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rm(~) model peak maximum value of rp(T) as a function of I] 
r=(l~) observed peak maximum value of r~(T) as a function of 13 
T temperature at t 
To temperature at to 
Tr resonant temperature of desorption 
Tin(13) model peak maximum temperature as a function of I] 
T=(I]) observed peak maximum temperature as a function of 13 
0t logarithmic frequency factor 

13 linear heating rate 

~, resonant heating rate 

0 fractional surface coverage at t 

0o fractional coverage at to 
0m([3) peak maximum fractional coverage as a function of 13 
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Z u s a m m e n f a s s u n g -  Es wird eine neue Methode fur die Analyse von Thermodesorptions- 
spektren vorgestellt, die auf den experimentellen Peakmaximumfunktionen fur die Temperatur 
T,(6) und den Druck P,(6) sowie auf einer strikten mathematischen Verarbeitung *bsiert. Es 
wurde die resonante Aufheizgeschwindigkeit 6r ermittelt, die die Bedingung Tm(Br)=Tr erfiillt, 
wobei Tr die Resonanztemperatur mit der Definition A exp(-Ea/(RTr))=l ist. Wie an computer- 
simulierten Desorptionsspektren gezeigt wurde, k6nnen Desorptionsenergie Ed und Frequenz- 
faktor A mit relativ geringer Anfiilligkeit gegen statistische experimentelle Fehler gleiehzeitig be- 
stimmt werden. 
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Appendix: Principle of the suggested method 

The gas evolution function will have its maximum at Tm for which 
(dP/dT)lTm=0 hoIds. Taking into account Eq. (3), and supposing the differential 
of Eq. (26) with respect to T is zero 

001  O 011 d r  Jr.=~'e T. n0~m-'(6) ~ + (~) [- Tm 2 rm d-T = 0. 

r.  ro (27) 

where T~(O)=Tro+WtO, we have 

dO 0~Tr(0m) 

Substitution of --dOIdT from Eq. (26) finally results in 

n ^ o~Wt'~^n_l,,-,, a T'-T&0~) 0~Zr(0m) (28)  
- Vm-'-~-m JOm tp)e Tm = (]3) T2 

For the resonant heating rate ~r is Tm(~)=T~(Om(~r)), SO that the last equa.on be- 
c o m e s  

rm(f3r)" 

On the other hand, rearranging Eq. (26) at T=Tm gives 

%,- T~O~(13)) 
13rm(13) = O~(13)e =- T. , 

which, for 13r, is reduced to 

so that 

(29) 

(30) 

~r/m(~,) = 0~(~,), (3 1) 

era(13,) = ~ f l , ) .  (32) 

Substituting this value of 0m(~r) in Eq. (29) finally gives 
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Tr(em(l~r)) =Tm(~r ) -  ~ ~ l ~ r ) ( 1  +Wtrm(l~r)), ( 3 3 )  
n r~--~-~,) " 

o r  

= '~- �9 ~ ~, ~. Wtrm([~r) + WtOm(~r). 

For a desorption with coverage dependent resonant temperature under the 
condition IWtrm([~)l<<l, it is rational 

(35) 
rro = rm(13,) = - - .  

n rm(l~r) 

For a desorption without coverage dependent resonant temperature, i.e. 
Wt = 0, we have the condition-function 

ct ~ (36) 
T, = Tm(13r) = - - .  

n rm(l~r) 

So the Procedure 1 is derived. 
For simplicity only a desorption without coverage dependent resonant tem- 

perature is considered to derive Procedures 2-3. An obvious difference be- 

tween NM and OM is that, NM considers 0m as function of ~. Differentiating 

Eq. (30) with respect to [~ at ~ = 13r gives 

^ drm(13) =nOm-~(IMd~e~ml +O~.(IM ~ dTm 
~, op I ~, Tin(J3,) d-~ t~, 

(37) 

The (n-1)th power of Eq. (11) at T=Tm results in 

= d 0 o T  -1, 
I~ + (n - -  l)Oon-lt(ro, Tin) . L o = ( 1 3 ) j  

and the derivative of Eq. (12) for T=Tm results in 

(38) 

dl(To, Tin) I dTm (39) 
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so that Eq. (38), differentiated with respect to [3 at 13,-, becomes 

n-1 n-2 

d0m 

6, 

or, after rearrangement, 

n-1 

n0,m-1(~ir) d0m I n O~r){1 [0m([30] dTm 
dl ] [l~.=n_l ' - [ . - - ~  ] -(n-l)8~-'(~r)-~-~- , 

Taking into account Eq. (31), the last equation results in 

00., rm  r'[ n0 "0' n, d l] 
n0~-l(13') OI3 [t~, n-1 n O~ 1 (n-1)n0~-(l~0-d-- ff 13, " 

On the other side, dividing Eq. (37) by rm(~l,) and substituting from the above 
equation n0~-l(~r) (d0Jd]])l~, gives 

dry(13) 

1+13, ~ ~ , _ l ~ d r m  
r~(l~) T~(13,) dl~ 

n n 0~-l([3r) dTm[ 
+ - 0 ~ l  n 0 ~ - l ( f l r )  

~ " - '  . - ,  d~l~ ," 

Subsequently substituting nO~'(fS,) from Eq, (29) into the above equation gives 

drm(13) [ 
d13 [e, n 1 I~ 

1 +1~, = rm(13,) n-1 n - 1 0 U  Tm(l~,)' 

o r  

[ ~176 ] 
T~(~)-0~ 137' - ( n -  1)r~(~)--d-~[13, " 
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This, compared with Eq. (36), gives the following condition equation from 
which the resonant heating rate 13r for the case n > 2 can be obtained 

n ~/13,rm(~r )rm(~) Oo~_,[~_l_(n_ 1)r~(~r) dr~_~____~) i~ ] ,  . (40) 

For the case n=l  the condition equation, derived in the same way as above, is 
given by 

0o ~ )  In I ~ r ~ l ~ )  - 1 + 13,r~l(~,) 
13, 

(41) 

As the important  special case of condition Eq. (40) for n=2 we have 

(42) 

If  rm(~) can be represented as 

rm(~) =y,o~ -~' (43) 

and T,.(fl) as 

Tm(l~) = yto~ ~' (44) 

for a best fit of the trends of  the available data sets {13i, r=(130, i = 1, N} and {13~, 

T=(]3i), i = 1, N}, we can estimate the resonant heating rate by substituting 
Eq. (43) in Eq. (41) for n=l  

1 

e k.y~o j 
(45) 

and in Eq. (42) for n=2 

^ 2 2fU~, _ eo(l+yJ , 
(46) 
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Furthermore, since it holds 

A A A 

T, = Tm(~r)  = ~tto~ 1' (47) 

we get finally from Eq. (36) 

^ A ^ ^ A ^ ( 4 8 )  a=T~l~3~, n = l ;  0t=27"r 7"~ro~r - l + ' ~ r  - T - ,  n=2.  

Procedure 2 is now developed. 
Procedure 3 is developed to graphically determine the resonant point 

(13~,r,~(13~)). Introducing the coordinate W(13)= ln(l~rm(13)/0o) for n = 1 in 
Eq. (41), the equation becomes 

OW(13) w(fl,) 
I~, 13' ' 

(49) 

the solution of which gives the corresponding isocline 

C 
W ( l ] r )  = - ~rr or In r _ c tOo )n ,  

The isociine for n=l is 

0o  _-~ (50) 
rm(l~)=-~e a,, c>0 .  

For n>2, transforming Eq. (40) by coordinate change W(~3)=r~l(~3)/f3 to 

n+l 
dW(I]) = -  n WT(13,), 

dfl ~, 0~ -~ 

(51) 

and solving it, the corresponding isocline is 

0~ -I 0o ~ , , ~ ' ~ -  (52) 
~/-ff(~,) =C+~r or rm(f~,)=C+fl ' c+f~, 

where c > 0, that, for n = 2, results in the isocline 
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(53) 
rm(13r) = (C + ~,)2' C > O. 

A special isocline, which is a tangent to r=(13) at the point (~ r ,  rm(~r)), is 

noted in Definition 3 as resonant isocline of the observed function r,,(13). Using 
the concept of the resonant isocline, Procedure 3 is naturally constructed. 
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